Batched Multi-hop Multi-key FHE from ring-LWE with Compact Ciphertext Extension

نویسندگان

  • Long Chen
  • Zhenfeng Zhang
  • Xueqing Wang
چکیده

Traditional fully homomorphic encryption (FHE) schemes support computation on data encrypted under a single key. In STOC 2012, López-Alt et al. introduced the notion of multi-key FHE (MKFHE), which allows homomorphic computation on ciphertexts encrypted under different keys. In this work, we focus on MKFHE constructions from standard assumptions and propose a new construction of ring-LWE-based multi-hop MKFHE scheme. Our work is based on Brakerski-GentryVaikuntanathan (BGV) FHE scheme where, in contrast, all the previous works on multi-key FHE with standard assumptions were based on Gentry-Sahai-Waters (GSW) FHE scheme. Therefore, our construction can encrypt a ring element rather than a single bit and naturally inherits the advantages in aspects of the ciphertext/plaintext ratio and the complexity of homomorphic operations. Moveover, our MKFHE scheme supports the Chinese Remainder Theorem (CRT)-based ciphertexts packing technique, achieves poly (k, L, logn) computation overhead for k users, circuits with depth at most L and an n dimensional lattice, and gives the first batched MKFHE scheme based on standard assumptions to our knowledge. Furthermore, the ciphertext extension algorithms of previous schemes need to perform complex computation on each ciphertext, while our extension algorithm just needs to generate evaluation keys for the extended scheme. So the complexity of ciphertext extension is only dependent on the number of associated parities but not on the number of ciphertexts. Besides, our scheme also admits a threshold decryption protocol from which a generalized two-round MPC protocol can be similarly obtained as prior works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-key FHE from LWE, Revisited

Traditional fully homomorphic encryption (FHE) schemes only allow computation on data encrypted under a single key. López-Alt, Tromer, and Vaikuntanathan (STOC 2012) proposed the notion of multi-key FHE, which allows homomorphic computation on ciphertexts encrypted under different keys, and also gave a construction based on a (somewhat nonstandard) assumption related to NTRU. More recently, Cle...

متن کامل

Multi-identity and Multi-key Leveled FHE from Learning with Errors

Gentry, Sahai and Waters recently presented the first (leveled) identity-based fully homomorphic (IBFHE) encryption scheme (CRYPTO 2013). Their scheme however only works in the single-identity setting; that is, homomorphic evaluation can only be performed on ciphertexts created with the same identity. In this work, we extend their results to the multi-identity setting and obtain a multi-identit...

متن کامل

Two Round MPC from LWE via Multi-Key FHE

We construct a general multiparty computation (MPC) protocol in the common random string (CRS) model with only two rounds of interaction, which is known to be optimal. In the honest-but-curious setting we only rely on the learning with errors (LWE) assumption, and in the fully malicious setting we additionally assume the existence of non-interactive zero knowledge arguments (NIZKs). Previously,...

متن کامل

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts

We present a multi-key fully homomorphic encryption scheme that supports an unbounded number of homomorphic operations for an unbounded number of parties. Namely, it allows to perform arbitrarily many computational steps on inputs encrypted by an a-priori unbounded (polynomial) number of parties. Inputs from new parties can be introduced into the computation dynamically, so the final set of par...

متن کامل

Targeted Homomorphic Attribute-Based Encryption

In (key-policy) attribute based encryption (ABE), messages are encrypted respective to attributes x, and keys are generated respective to policy functions f . The ciphertext is decryptable by a key only if f(x) = 0. Adding homomorphic capabilities to ABE is a long standing open problem, with current techniques only allowing compact homomorphic evaluation on ciphertext respective to the same x. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017